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Figure 1: Our method renders the Stanford Asian Dragon (7.2 M triangles) with heterogeneous materials at 43 frames per second.

Abstract

This paper presents the Subsurface Light Propagation Volume
(SSLPV) method for real-time approximation of subsurface scat-
tering effects in dynamic scenes with changing mesh topology and
lighting. SSLPV extends the Light Propagation Volume (LPV)
technique for indirect illumination in video games. We introduce
a new consistent method for injecting flux from point light sources
into an LPV grid, a new rendering method which consistently con-
verts light intensity stored in an LPV grid into incident radiance, as
well as a model for light scattering and absorption inside heteroge-
neous materials. Our scheme does not require any precomputation
and handles arbitrarily deforming meshes. We show that SSLPV
provides visually pleasing results in real-time at the expense of a
few milliseconds of added rendering time.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Radiosity; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Shading; I.3.3 [Com-
puter Graphics]: Picture/Image Generation—Display Algorithms

Keywords: subsurface scattering, real-time rendering, Light Prop-
agation Volumes

1 Introduction

Subsurface scattering is an important visual phenomenon for many
categories of translucent materials, such as marble, milk, skin, and
teeth. Formally, all non-metallic materials scatter incoming light
inside the object such that the light is eventually either absorbed
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or leaves the object at a different location, in a different direction,
and with a different spectral composition. The visual effect is natu-
rally more evident in some materials than others. In both computer
games and feature films, recent advances in the field of subsurface
scattering have enabled more believable characters due to our sensi-
tivity to the exact appearance of e.g. skin. However, the simulation
of the complex phenomenon of subsurface scattering remains chal-
lenging; the outgoing radiance at any point on a surface essentially
depends on the incoming radiance at all points on the entire surface
as well as the scattering and absorption properties of the medium.
A complete Monte Carlo solution to a general description of light
transport in participating media is prohibitively slow, hence, sub-
surface scattering is often modelled by approximate methods such
as the diffusion approximation or the dipole approximation [Jensen
et al. 2001].

In the last decade, much research has gone into solving the diffu-
sion equation efficiently as well as achieving similar effects through
other approximations. In recent years, the raw computational power
of the GPUs has made real-time subsurface scattering feasible
through various simplifications, approximations and precomputa-
tions. We present Subsurface Light Propagation Volumes (SSLPV)
as a novel approach to real-time rendering of subsurface scatter-
ing. Unlike existing approaches, our method supports both hetero-
geneous material properties and changes in object topology without
any precomputations.

Our method is essentially an extension to the Light Propagation
Volume (LPV) method [Kaplanyan and Dachsbacher 2010; Ka-
planyan et al. 2011], which was introduced as an efficient tech-
nique for real-time indirect illumination. As a secondary result,
Kaplanyan and Dachsbacher [2010] note that single scattering from
participating media can be included in the model quite easily. The
main purpose of the present work is to extend the LPV model to
account for a broader range of phenomena in participating media,
in particular subsurface scattering. We demonstrate that the signif-
icant numerical diffusion of the LPV method plays well together
with the simulation of highly scattering materials. However, we do
not expect the SSLPV method to be suitable for light transport in
highly translucent materials. Our contributions are the following:

• A novel LPV based method for subsurface scattering.
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Figure 2: Conceptual overview of the SSLPV method. (a) A reflective shadow map is created for each light source. The shadow maps are
used to create virtual point light sources in the grid cells lying on the boundary of the object. (b) Light is propagated between neighbouring
cells in the propagation step. Propagation is repeated iteratively until all light has escaped the grid cells within the object interior. (c) Light
transported through the object surface is collected and used for rendering subsurface scattering. Finally, direct reflections are added.

• Support for arbitrarily deforming meshes.

• A heuristic model of scattering and absorption effects in LPV.

• A consistent method for rendering using LPV grids and for
injecting flux from point lights into LPV grids.

2 Related Work

Multiple scattering is often modelled by the diffusion approxima-
tion [Kajiya and Herzen 1984; Stam 1995]. Stam [1995] origi-
nally proposed a grid based numerical scheme to solve the diffusion
equation for heterogeneous materials. Later Jensen et al. [2001]
devised a dipole point source diffusion approximation model which
formed the basis for many of the following techniques. Jensen and
Buhler [2002] improved on the offline rendering times by precom-
puting an acceleration structure for neighbour vertex lookup and
split the light computation into two passes.

Several authors have worked on achieving real-time subsurface
scattering. Sloan et al. [2003] precompute low frequency light scat-
tering for all vertices and encode the factors into spherical harmon-
ics. Multiple techniques [Hao and Varshney 2004; Lensch et al.
2003; Carr et al. 2003] are based on variants of precomputed vertex-
to-vertex diffusion throughput factors. Mertens et al. [2003] pre-
compute a hierarchical mesh data structure to reduce the complex-
ity of integrating over the mesh surface. Wang et al. [2008] demon-
strate how to precompute 1D homogeneous basic scattering profiles
and linearly combine them on the fly to achieve real-time manipu-
lation of optical properties. More recently, discretisation on a tetra-
hedral mesh and a clever GPU implementation were used to solve
the diffusion equation in real-time [Wang et al. 2010]. Although
rendering is real-time in the work by Wang et al. [2008; 2010],
they require a significant amount of time for precomputation based
on the geometry. Hence, objects that undergo topological changes
cannot be handled in real-time.

Some methods do not require preprocessing of light propagation
although some rely on the generation of a texture map for each ren-
dered mesh. François et al. [2008] use relief texture mapping and a
ray marching algorithm for gathering interior single scattering con-
tributions along the view direction. Multiple authors have used
translucent shadow maps (TSM) [Dachsbacher and Stamminger
2003] for approximating global subsurface scattering in real-time.
TSMs are rendered from each light source and then filtered with a

depth dependent kernel. d’Eon et al. [2007] use filtering of illumi-
nation textures to model local scattering and TSMs for global ef-
fects. A similar combined approach is taken by Chang et al. [2008]
using importance sampling instead of a smoothing kernel. Opti-
misations of this approach were proposed by Jimenez et al. [2008]
and Hable et al. [2009]. Jimenez et al. [2009] further improved
performance of the method by doing computations in screen space.

Mertens et al. [2005] also proposed a screen space method for ren-
dering local subsurface scattering effects in real time. Their work
uses importance sampling of an irradiance map which is rendered
in either screen space or texture space. Note that the latter ap-
proach requires a texture parameterisation. The screen space meth-
ods above require no precomputation of a texture parameterisation
and they can be used with arbitrary changes of topology. Although
a screen space method in nature cannot handle global effects such
as light bleeding through, it can be combined with TSMs to approx-
imate such effects. The advantage of our method compared to this
approach is the ability to handle both local and large-scale scatter-
ing effects while allowing heterogeneous material properties.

The Lattice-Boltzmann lighting model is somewhat similar to our
method in terms of implementation [Geist et al. 2004]. This method
propagates photon densities in a grid according to a local set of col-
lision rules. Recent GPU based optimisations have accelerated the
Lattice-Boltzmann method significantly, however, real-time frame
rates have not yet been achieved [Geist and Westall 2011].

3 Method

This section outlines the theoretical foundation for our method in
general terms. In Sec. 4 we describe how to apply the method ef-
ficiently. Figure 2 shows the conceptual overview of our SSLPV
method. The scene geometry is enclosed by a regular lattice, the
LPV grid, on which point light intensities representing the subsur-
face lighting contribution are computed and stored. The main steps
shown in Fig. 2, injection, propagation, and rendering will be de-
scribed in detail below.

3.1 Injection

We inject light into the scene by a slight modification of the scheme
described by Kaplanyan and Dachsbacher [2010]. They first gen-
erate a reflective shadow map (RSM) for each light source [Dachs-
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Figure 3: The shadow map for a point light source is characterised
by the map resolution (Nx, Ny), field of view FOV, aspect ratio α,
and the normal vector.

bacher and Stamminger 2005]. For each texel p in the RSM, they
store the world space position xp and the normal np. Furthermore,
because they use the RSM to generate the directional intensity dis-
tribution of reflected light, they also store the reflected flux. How-
ever, the main focus in our work is subsurface scattering, and there-
fore we will use a shadow map to create an intensity distribution
of light transmitted into an object. Thus, instead of storing the re-
flected flux, we use a shadow map to store the incoming flux Φp
through each texel. Despite this minor difference in use, we will re-
fer to these shadow maps as RSMs in order to keep our terminology
more consistent with previous work.

The shadow map spans a virtual rectangular plane as shown in
Fig. 3 and is characterised by the field of view FOV, the height
to width aspect ratio α, and the number of texels in the horizontal
and vertical directions, Nx and Ny , respectively. For a point light
source which emits uniformly in all directions, the flux through a
texel is Φp = I∆ωp, where I is the constant intensity and ∆ωp is
the solid angle subtended by the texel seen from the light source

∆ωp ≈
Ap cos θp
||rp||2

=
4α tan2

(
FOV

2

)
cos3 θp

NxNy
.

Ap is the pixel area in the virtual plane, rp is the vector from the
light source to the pixel center, and θp is the angle between the
plane normal and rp.

For each texel in the shadow map, we use the flux Φp to estimate
the transmitted intensity of a virtual point light source inside the
object. We use a bidirectional transmission distribution function
(BTDF) with angular dependence proportional to a clamped cosine
lobe centred around the refracted direction obtained from Snell’s
law, i.e., the virtual point light intensity is

Ip(ω) =
1

π
T (ωp,ωt)Φp max {0,ωt · ω} , (1)

where T is the Fresnel transmission factor from the incoming di-
rection ωp to the refracted direction ωt. Next, we use the world
space position xp to identify the grid cell that the texel is projected
into. This grid cell will lie on the boundary of the scene geometry
as shown in Fig. 2(a). In each of these boundary grid cells we ac-
cumulate the point light intensities from the RSM to a single point
light source in the cell center, i.e. I(ω) =

∑
p,xp∈cell

Ip(ω). This
process is referred to as injection of light into the LPV grid.

In principle, we could choose other forms of the BTDF, e.g. an ideal
specular material should be represented by a BTDF proportional to
a delta function δ(ω − ωt). This type of light distribution is, how-
ever, impossible to represent with our method as will be discussed
further in Sec. 6.

+

+

+

Figure 4: Iterative propagation. Each propagation step updates
the light distribution which is stored in the propagation grid. The
accumulation grid collects the distributions from all propagation
steps and is used as the source of illumination for the rendering
pass.

Similar to Kaplanyan and Dachsbacher [2010] we use the basis of
real spherical harmonics to represent the angular dependence of the
intensity distribution, i.e.

I(ω) =

lmax∑
l=0

l∑
m=−l

clmylm(ω),

where the expansion coefficients clm are obtained by projecting
Eq. (1) on the spherical harmonics. The upper limit in the sum-
mation lmax defines the number of bands included in the basis.

The reflected part of the incoming flux is not used in our SSLPV
scheme but is simply added as standard diffuse and specular reflec-
tions to the final result, Fig. 2(c). Shadow effects are easily added
to the direct illumination since the RSMs are readily available.

3.2 Propagation

Our propagation scheme is similar to the scheme presented by Ka-
planyan and Dachsbacher [2010]. For completeness, we briefly out-
line the method below and refer to the original papers [Kaplanyan
and Dachsbacher 2010; Kaplanyan et al. 2011] for further details.

The basic idea is to redistribute light by gathering flux transferred
from neighbouring grid cells. In a single propagation pass, we tra-
verse through all grid cells. We propagate light into one (destina-
tion) cell by considering the point light intensities in its six neigh-
bouring (source) cells along the axial directions. For one source
cell s, the amount of flux that reaches the face f in the destina-
tion cell d is Φf,d←s =

∫
∆ωf,s

Is(ω)dω, where Is(ω) is the in-
tensity distribution in the source cell and ∆ωf,s is the solid angle
subtended by f seen from the source cell center. We now cre-
ate a virtual point light source in the destination cell which has
an intensity profile proportional to a clamped cosine lobe directed
towards f and emits exactly the flux Φf,d←s, i.e. If,d←s(ω) =
Φf,d←s/πmax{0,nf · ω}, where nf is the face normal. We
repeat this procedure for all faces, except the bordering face be-
tween the source and destination cells, and all six source cells. All
these contributions are then summed to a single point light source
in the center of the destination cell with the intensity distribution
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Figure 5: (a) The point light intensity in a boundary grid cell of the final accumulation grid. (b) The path from the camera refracted through
the surface cannot hit an infinitesimal light source. (c) The amount of flux going outwards (shaded dark gray area) is converted to a virtual
area light (d).

Id(ω) =
∑

s

∑′
f
If,d←s(ω). The primed summation excludes

the bordering face. In practice, we can propagate between two cells
by a single matrix-vector multiplication as we will show in Sec. 4.
The propagation step is repeated iteratively and the point light in-
tensities are continuously updated in a grid, which we will refer to
as the propagation grid. After each step the point light intensities
are accumulated in a separate grid, the accumulation grid, which
eventually will represent the final distribution of light. The accu-
mulation grid is finally used as the light source for rendering of the
scene. Figure 4 illustrates how the light intensities are collected in
the accumulation grid. Convergence is achieved when the propa-
gation grid is empty and, correspondingly, the accumulation grid is
constant.

In contrast to the standard LPV scheme described above, we aim to
model participating media, hence, we need to take absorption and
scattering effects into account. Light transport in participating me-
dia is usually described by the radiative transport equation (RTE).
Unfortunately, such a formulation requires that light transport is
characterised by rays carrying radiance. Therefore, we cannot di-
rectly use the RTE in our propagation scheme. If the RTE were to
be implemented in the SSLPV propagation scheme we would first
need to convert our point light intensities to radiance carrying rays.
Second, we should integrate the RTE in order to estimate the flux
transport to a face in a neighbouring cell. Our main focus is to
maintain an efficient implementation so instead of an RTE based
approach we model participating media by a simple method which
fits straightforwardly in the standard LPV propagation scheme.

3.2.1 Absorption

Absorption is characterised by a colour dependent extinction coef-
ficient σt, i.e. the fraction of radiance being absorbed or scattered
per unit length. This leads to an exponential decay of radiance,
known as Beer’s law. In our approach, absorption is modelled by
attenuating the flux transfer between two adjacent cells by the factor
exp(−σt∆Xcell), where ∆Xcell is the cell width.

In heterogeneous materials the extinction coefficient will vary in
space, and, hence, we use a separate grid to store the RGB compo-
nents of the extinction coefficient.

3.2.2 Scattering

Our volume scattering model should have the property that flux
transfer between neighbouring cells must depend on the scattering
properties of the medium. In order to fulfil this requirement, we
model scattering by redistributing the intensity distribution accord-
ing to the phase function p(ω · ω′) and a dimensionless scattering
parameter σ′s ∈ [0, 1] which accounts for the amount of scattering

Isc(ω) =
(
1− σ′s

)
I(ω) + σ′s

∫
4π

p(ω · ω′)I(ω′)dω′. (2)

I(ω) is the intensity distribution obtained according to the repro-
jection step in the standard LPV scheme and Isc(ω) is the intensity
distribution being propagated to the neighbouring cells. Further-
more, the phase function is assumed to be normalised to unity on
the unit sphere. Note that Eq. (2) deceptively resembles the scat-
tering term in the RTE but involves intensity instead of radiance.
However, we do not present Eq. (2) as a rigourous approximation
to the true volume scattering but rather as an intuitive model with
the desired property mentioned above.

The spherical harmonics addition theorem can be used to express
the phase function in terms of spherical harmonics p(ω · ω′) =∑∞

l=0

∑l

m=−l plylm(ω′)ylm(ω), where the multipole moments
pl depend on the scattering properties of the medium. We assume
the Henyey-Greenstein form for the phase function characterised
by the asymmetry parameter g ∈ [−1, 1] with g negative (posi-
tive) corresponding to backward (forward) scattering [Henyey and
Greenstein 1941]. In this case the multipole moments are simply
pl = gl. Note that the addition theorem is often expressed in terms
of complex spherical harmonics. It is, however, straightforward to
show the corresponding theorem for the real spherical harmonics.

Inserting the spherical harmonics expansion of the intensity distri-
bution in Eq. (2) and using the orthogonality of the spherical har-
monics leads to

Isc(ω) =

lmax∑
l=0

l∑
m=−l

[
(1− σ′s) + σ′sg

l
]
clmylm(ω). (3)

Kajiya and Herzen [1984] noted that the phase function is diag-
onal in the basis of complex spherical harmonics, i.e., scattering
does not mix between different spherical harmonics components.
Equation (3) shows the equivalent statement in the real basis. This
fact allows us to implement Eq. (3) easily in the existing propaga-
tion scheme simply by multiplying the expansion coefficient clm
by (1 − σ′s) + σ′sg

l prior to the propagation step. Note that com-
plete forward scattering, g = 1 cannot be distinguished from no
scattering. Another limiting case is isotropic scattering g = 0. In
this case, all coefficients in the spherical harmonics expansion are
reduced by 1− σ′s, except the spherically symmetric component.

As for the absorption, we store the scattering and asymmetry pa-
rameters in grids in order to account for heterogeneous materials.

3.3 Rendering

In the rendering step we need to convert the light distribution inside
the object to a radiance estimate on the outside of the surface. The
distribution inside the object is represented by the point light inten-
sities of the boundary grid cells in the final accumulation grid. In
general we would obtain the outgoing radiance Lo in the direction

4



To appear in the High-Performance Graphics 2011 conference proceedings

Figure 6: Comparison of a human ear (32K triangles) rendered
without and with SSLPV.

ωo from a surface point xo to the camera as

Lo(xo,ωo) = T (ωi,ωo)Li(xo,ωi), (4)

where Li is the incident radiance and T is again the Fresnel trans-
mission factor. The incoming direction ωi is determined from ωo
and Snell’s law. In our case, however, we cannot use Eq. (4) di-
rectly because we store point light intensities in the LPV grid rather
than radiances.

One problem with the point light representation is to estimate the in-
cident radiance consistently. Point light radiance is estimated as the
intensity divided by the squared distance between the light source
and the point of incidence. However, such an estimate is inconsis-
tent in the LPV context because a slight translation of the surface
with respect to the grid will lead to a dramatic change in incident
radiance, in particular if the surface is close to the light source.
Similarly, changing the grid resolution could also lead to significant
changes in the radiance estimate. Another problem related to point
lights is that the probability for an eye or light ray path to connect
the light source and the camera is infinitesimal. Effectively, this
means that a ray from the camera which is refracted through the
surface will never hit the light source as shown in Fig. 5(b). Thus,
in order to solve these issues, we need an alternative method to es-
timate radiance. Our proposal is to convert the point light intensity
to incident radiance by approximating the point light source with a
uniform area light which is parallel to the surface and spans a cross
section of area A of the grid cell as shown in Figs. 5(c) and (d).
Here we assume that the LPV grid has been chosen dense enough
that the surface can be considered being locally flat across each grid
cell. For consistency, we require that the total flux emitted by the
area light Φarea = LiAπ, must be equal to the flux emitted in the
hemisphere directed towards the surface by the original point light
Φpoint =

∫
2π
I(ω)dω, i.e. Li = Φpoint/(Aπ). If the surface nor-

mal coincides with the world space z-axis from which our spherical
harmonics are defined, it would be easy to estimate the area light
radiance as

Li =
1

Aπ

lmax∑
l=0

l∑
m=−l

clm

∫ 2π

0

∫ π/2

0

ylm(θ, φ) sin θdθdφ

=
2

A

lmax∑
l=0

cl0

∫ π/2

0

yl0(θ) sin θdθ. (5)

In the equation above we used that
∫ 2π

0
ylm(θ, φ)dφ ∝ δm0 and

that yl0(θ, φ) is independent of the azimuthal angle φ. The angular
integrals in Eq. (5) are easily calculated analytically.

Figure 7: Animated slime flowing around a monkey head (max.
110K triangles) demonstrates that our method handles changing
topology.

In general, however, the surface normal n will not be aligned along
the world space z-axis. In this case, we can still use Eq. (5) pro-
vided that we express the expansion coefficients with respect to
a set of spherical harmonics defined from the surface normal in-
stead of the world space coordinate system. Let us arrange the ex-
pansion coefficients in the world space system in a column vector
c = (c00, c1−1, c10, · · · , clmaxlmax)T , and a corresponding vec-
tor c(n) which contains the expansion coefficients in the surface
normal coordinate system. The two sets of coefficients are related
through

c(n) = [RSH(α, β, γ)]−1 · c, (6)

where (α, β, γ) are the zyz Euler angles that define the rotation
and RSH(α, β, γ) is the spherical harmonics rotation matrix [Green
2003]. Notice that Eq. (6) contains the inverse (adjoint) rotation
matrix which corresponds to a passive rotation. The Euler angles
fulfil tanα = ny/nx, cosβ = nz , and γ = 0, where the normal
vector components refer to the world space coordinate system. The
final outgoing radiance is then

Lo(xo,ωo) = T (ωi,ωo)
2

A

lmax∑
l=0

c
(n)
l0

∫ π/2

0

yl0(θ) sin θdθ. (7)

The radiance estimate presented in this section avoids the two main
issues by the point light representation, namely the singularity if
the surface accidentally coincides with the point light as well as the
vanishing probability for a path to connect the light source and the
camera. The trade-off is that we lose directional information from
the intensity distribution. For highly scattering media, however,
it is well-known that the distribution becomes nearly independent
of directions as will be discussed further in Sec. 6 and, hence, we
propose that this trade-off is acceptable.

4 Implementation details

We have implemented the SSLPV algorithm using the OpenGL
graphics API including the OpenGL Shading Language (GLSL).
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Figure 8: Comparison of visual quality when rendering the Stanford Dragon (50K triangles) using 8, 16, 32 and 64 propagation steps,
respectively. The subsurface scattering contribution has been scaled up by a factor of 3, 2 and 1.2 in the first three renderings in order to
compensate for the light which has not yet left the object. Note that using many propagation steps results in excessive dissipation because
our model does not currently remove light which is leaving the object from the propagation grid. We leave this issue as future work.

We use two spherical harmonics bands in our implementation, i.e.,
lmax = 1. The spherical harmonics are the basis vectors, in a four
dimensional subspace

e0 = y00(ω) = 1/
√

4π,

e1 = y1−1(ω) =
√

3/(4π) sin θ sinφ,

e2 = y10(ω) =
√

3/(4π) cos θ,

e3 = y11(ω) =
√

3/(4π) sin θ cosφ.

In this basis, the intensity is represented as the column vector
c = (c00, c1−1, c10, c11)T . For each colour component we use two
RGBA 3D textures as alternating source and target during propaga-
tion, and one for the accumulation grid to store the four coefficients
across the LPV grid. Typically, we use a grid resolution of 323 and
store the coefficients as 16 bit floats. Furthermore, we need two 3D
textures to store the properties of heterogeneous materials, one for
the three colour components of the extinction coefficient σt and one
for the colour components of the asymmetry parameter g.

Propagation between the source cell s and the destination cell d can
be written conveniently in terms of matrix-vector operations in the
propagation grid. First, the flux transfer can be expressed as

Φf,d←s =

∫
∆ωf,s

Is(ω)dω =
∑
l,m

cs,lm

∫
∆ωf,s

ylm(ω)dω

= vTf,d←s · cs,
with the elements of the vector vf,d←s

[vf,d←s]l2+l+m =

∫
∆ωf,s

ylm(ω)dω.

Second, we find the expansion coefficients for the point light
in the destination cell by projecting the intensity distribution
If,d←s(ω) = Φf,d←s/πmax{0,nf ·ω} on the spherical harmon-
ics

cf,d←s =


∫

4π
If,d←sy00(ω)dω∫

4π
If,d←sy1−1(ω)dω∫

4π
If,d←sy10(ω)dω∫

4π
If,d←sy11(ω)dω



=
1

π


∫

2π
nf · ωy00(ω)dω∫

2π
nf · ωy1−1(ω)dω∫

2π
nf · ωy10(ω)dω∫

2π
nf · ωy11(ω)dω

 · vTf,d←s · cs.
Thus, the new coefficients are effectively the result of the matrix
product cf,d←s = Mf,d←s · cs, where the matrix elements are

[Mf,d←s]l2+l+m,l′2+l′+m′ =
1

π

∫
2π

nf · ωylm(ω)dω

×
∫

∆ωf,s

yl′m′(ω)dω.

Furthermore, we can easily sum the contribution from all faces to
obtain the total propagation from s to d as a single matrix-vector

multiplication cd←s =
(∑′

f
Mf,d←s

)
· cs. The constant propa-

gation matrix in the parenthesis can be calculated once and for all.
For example, in an axis aligned uniform LPV grid, the propagation
matrices from source cells in the positive and negative x directions
are

′∑
f

Mf,d←d±x =

 0.167 0 0 ∓0.240
0 0.070 0 0
0 0 0.070 0

∓0.037 0 0 0.062

 .

The corresponding matrices for source cells along the y and z di-
rections are obtained from the matrix above by permutation of the
fourth row and column by the second and third row and column,
respectively.

In the rendering step, we can simplify the expression for outgoing
radiance Eq. (7), because we only include two bands in the spherical
harmonics expansion, i.e.,

Lo(xo,ωo) = T (ωi,ωo)
2

A

(√
1

4π
c
(n)
00 +

1

2

√
3

4π
c
(n)
10

)
,

where the two expansion coefficients are obtained from Eq. (6) and
the explicit representation of the rotation matrix [Green 2003]

c
(n)
00 = c00,

c
(n)
10 = sinα sinβc1−1 + cosβc10 + cosα sinβc11.

The coefficients clm are the coefficients in the accumulation grid
which refer to the world space axes.

As a final implementation detail, we should mention that during the
first two propagation steps we do not accumulate the light intensi-
ties from the propagation grid in order to reduce temporal flickering
resulting from moving light sources and geometry.

5 Results

We have implemented our method on an Intel Xeon E5620
2.40GHz CPU with 4GB of memory utilising an NVIDIA
GeForce GTX 580 GPU with 1.5GB dedicated memory. The
various steps of our algorithm are implemented in GLSL
shaders, which will be made available on the companion website
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(http://cg.alexandra.dk/publications/sslpv/). All renderings are per-
formed at 1280×720 with a basic Phong surface shading of the re-
flected direct light contribution. We have tested the various compo-
nents of our method using a number of scenes which each demon-
strate a single component for clarity, i.e. homogeneous or hetero-
geneous materials, the number of propagation steps, the LPV grid
resolution, and the number of light sources. Our method is highly
flexible in the sense that each of these components can be scaled up
or down independently in order to achieve a desired performance or
quality. All renderings were performed using an LPV grid of reso-
lution 323 and 32 propagation steps unless otherwise stated. Like-
wise, most examples use one point light with an RSM of resolution
10242, although only 2562 texel values are used for injection while
the remaining resolution is merely used for conventional shadow
mapping. Heterogeneous material tests were performed using a
1283 grid for material parameters. We use the material parame-
ters to shade the direct light which justifies the higher resolution;
otherwise a resolution equal to the LPV grid is sufficient.

Figure 6 shows the effect of adding SSLPV to a model of a human
ear lighted from the side. The flesh is modelled as a homogeneous
material with a slightly red tint, while texture, normal, and specular
maps provide surface details to the shading. Figure 7 demonstrates
that our method handles completely dynamic geometry including
topology changes. Again, a homogeneous material is used for the
slime, while the monkey head is rendered using a traditional opaque
Phong shading with texturing. Note that the head is not included
in the RSM and therefore does not cast shadows. While the two
previous examples use 32 propagation steps, Fig. 8 illustrates that
visually pleasing results can be achieved using as little as 8 propa-
gation steps depending on the scene. Figure 9 shows the Stanford
Thai Statue rendered with heterogeneous materials using different
LPV grid resolutions and lighting, while Fig. 10 shows two frames
from a scene with an animated heterogeneous material. Please see
the accompanying video for animations.

Timings averaged over several animation cycles (see the video) are
presented in table 1. We have performed them using both 8 and 32
propagations steps as the number of steps affects the distance light
propagates in the LPV grid. Hence, the desired number of steps to
use is highly application and geometry dependent. The test scenes
which demonstrate homogeneous materials have also been timed
with heterogeneous materials to point out the extra overhead gen-
erated by the additional texture lookups. As the timings indicate,
SSLPV is largely unaffected by the geometry complexity which
only influences the RSM and shading steps. Thus, when our method
is used with a traditional RSM rendering pipeline, the additional
work is negligible in many cases. The complexity of the propaga-
tion step scales with the resolution of the propagation grid and is
therefore independent of the scene geometry. However, it seems
that increased computational complexity in one step of our method
may affect the actual timings of other steps as is evident from the
timings of Fig. 1. Comparing the rows involving Fig. 9 shows that
the performance penalty of increasing the LPV grid resolution dom-
inates the additional cost of adding one extra point light.

6 Discussion

Our implementation is based on a uniform cubic LPV grid. Such
a grid is, however, not the optimal choice for geometries that vary
over different length scales. In such cases, it would be more appro-
priate to use cascaded grids which should work straightforwardly
with our method [Kaplanyan and Dachsbacher 2010].

The grid resolution impacts the quality of the results. A coarse grid
can lead to visible artefacts, for example if objects are translated
within the grid. Furthermore, a coarse grid can lead to artificial light

Fig. Average timings (ms) FPS Lights /
RSM Injection Propagation Shading Grid res.

1 — / 5.91 — / 0.13 — / 2.72 — / 5.94 — / 65 1 / 323

6 0.30 / 0.29 0.30 / 0.32 0.72 / 1.67 0.48 / 0.81 475 / 290 1 / 323

7 0.17 / 0.18 0.29 / 0.32 0.72 / 1.66 0.13 / 0.14 630 / 380 1 / 323

8(a)+10 — / 0.24 — / 0.29 — / 1.67 — / 0.36 — / 350 1 / 323

9(a) — / 0.45 — / 0.12 — / 1.66 — / 0.39 — / 320 1 / 323

9(b) — / 0.94 — / 0.27 — / 3.77 — / 0.87 — / 155 2 / 643

1 — / 5.92 — / 0.12 — / 10.88 — / 5.94 — / 43 1 / 323

6 0.31 / 0.30 0.37 / 0.40 2.88 / 6.75 0.47 / 0.79 220 / 115 1 / 323

7 0.23 / 0.21 0.36 / 0.41 2.91 / 6.68 0.14 / 0.21 250 / 125 1 / 323

8(c)+10 — / 0.24 — / 0.38 — / 6.78 — / 0.50 — / 120 1 / 323

9(a) — / 0.47 — / 0.23 — / 6.69 — / 0.50 — / 120 1 / 323

9(b) — / 0.89 — / 0.25 — / 14.95 — / 1.38 — / 55 2 / 643

Table 1: Average homogeneous / heterogeneous timings for shown
figures. Top section uses 8 propagation steps. Bottom section uses
32 propagation steps.

Figure 9: Backlit Stanford Thai Statues (323K triangles) using het-
erogeneous materials resembling jade. (a) 323 LPV grid. 1 point
light. (b) 643 LPV grid. 2 point lights.

bleeding across regions that block light. In particular, this effect be-
comes an issue when we consider objects that undergo topological
changes such as merging objects. In this case we see light transport
between the objects slightly prior to the actual merging. Addition-
ally, small-scale features in the order of a grid cell width tend to be
too dark either because the injected light is dissipated away before
it can be collected in the accumulation grid or because the feature is
missed entirely by the injection step. These effects can be reduced
to some extent by introducing a blocking potential [Kaplanyan and
Dachsbacher 2010].

Figure 10: Stanford Dragon (50K triangles) rendered using an an-
imated heterogeneous material.
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One further limitation relates to the low-order spherical harmonics
representation which tends to average the directional distribution
of light, effectively leading to diffusion. A true directional prop-
agation would require an infinite number of spherical harmonics.
Thus, the SSLPV method combined with a low-order spherical har-
monics is not suited to preserve distinct directional features of light,
e.g. directional light transported in vacuum or in a weakly scatter-
ing material. However, the diffusion effect actually resembles the
effect of light transport in a highly scattering medium. In this case,
the effect of many scattering events is to smooth the directional de-
pendence [Stam 1995]. Hence, we propose that our method should
work very well for highly scattering media.

7 Conclusion and Future Work

In conclusion, we have presented SSLPV as an efficient method
to account for subsurface scattering in real-time. Our approach
requires no precomputation and is able to handle fully dynamic
scenes with heterogeneous materials.

In the future we would like explore the possibility of using a tetra-
hedral mesh based on the scene geometry instead of a fixed LPV
grid. We believe that a tetrahedral mesh will produce superior re-
sults in terms of quality because the mesh actively follows the ge-
ometry and, accordingly, grid artefacts are reduced. The challenge
is that dynamic scenes require re-meshing which will likely impact
performance.

Furthermore, we plan to replace our GLSL based propagation im-
plementation by a CUDA or OpenCL based implementation. We
propose that these programming and memory models more natu-
rally fit the present problem. For example, it would be interesting to
include more than two spherical harmonics bands in order to simu-
late more directional light transport. Due to our method being heav-
ily texture-bandwidth limited, adding an extra spherical harmonics
band will severely hurt the performance in the current implementa-
tion. On the contrary, a CUDA or OpenCL implementation would
be able to more efficiently exploit the memory bandwidth.
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