
WebGL pathtracing
Challenges and benchmark

Thomas Kjeldsen and Peter Trier Mikkelsen

Alexandra Instituttet

thomas.kjeldsen@alexandra.dk

May 22, 2013



Outline

• Alexandra Instituttet

• Motivation

• Demo

• Implementation

• Benchmark



Alexandra Instituttet - Mission

• Not-for-profit GTS institute within IT

• Add value to the Danish Industry

• From research to applications in industry

• Computer Graphics Lab
• Interactive visualization (fast, high quality)
• Accurate simulation of materials → photo realistic images
• Acceleration (using GPUs)
• Solving numerical problems
• Physical simulations (fluids, soft bodies)



Alexandra Instituttet - Mission

• Not-for-profit GTS institute within IT

• Add value to the Danish Industry

• From research to applications in industry

• Computer Graphics Lab
• Interactive visualization (fast, high quality)
• Accurate simulation of materials → photo realistic images
• Acceleration (using GPUs)
• Solving numerical problems
• Physical simulations (fluids, soft bodies)



Motivation - part 1



Motivation

• Interactive, realistic rendering in a web
browser

• E.g. realistic preview of customizable
products in a web store



Motivation

• Interactive, realistic rendering in a web
browser

• E.g. realistic preview of customizable
products in a web store





Motivation

• Interactive, realistic rendering in a web
browser

• E.g. realistic preview of customizable
products in a web store

• Raytracing is computationally expensive
(not feasible to implement in javascript)

• WebGL is a new standard that allows us
to access the power of the graphics card



Motivation

• Interactive, realistic rendering in a web
browser

• E.g. realistic preview of customizable
products in a web store

• Raytracing is computationally expensive
(not feasible to implement in javascript)

• WebGL is a new standard that allows us
to access the power of the graphics card



Motivation

• Interactive, realistic rendering in a web
browser

• E.g. realistic preview of customizable
products in a web store

• Raytracing is computationally expensive
(not feasible to implement in javascript)

• WebGL is a new standard that allows us
to access the power of the graphics card



Motivation - part 2



Motivation

• Have you ever experienced this situation?

• You receive an email from you friend

Hey, click on this link to view some
cool interactive 3D graphics. Link



Motivation

• Have you ever experienced this situation?

• You receive an email from you friend

Hey, click on this link to view some
cool interactive 3D graphics. Link



Motivation

• Or, Flash, Unity, java, etc.

• WebGL is natively supported by modern browsers



Motivation

• Or, Flash, Unity, java, etc.

• WebGL is natively supported by modern browsers



Demo

Demo 1
Demo 2

http://localhost/WebGL-BVHRaytracer/?traversal=stack
http://localhost/WebGL-BVHRaytracer/?traversal=stack&scene=motorcycle


Implementation



Implementation

• WebGL is nearly equivalent to OpenGL ES 2.0

• Programmable pipeline allows us to do complex calculations
per pixel

• In our case: Execute a ray tracing program for each pixel on
the screen

Source: http://en.wikipedia.org/wiki/File:Ray trace diagram.svg



Implementation

• WebGL is nearly equivalent to OpenGL ES 2.0

• Programmable pipeline allows us to do complex calculations
per pixel

• In our case: Execute a ray tracing program for each pixel on
the screen

Source: http://en.wikipedia.org/wiki/File:Ray trace diagram.svg



Implementation

• WebGL is nearly equivalent to OpenGL ES 2.0

• Programmable pipeline allows us to do complex calculations
per pixel

• In our case: Execute a ray tracing program for each pixel on
the screen

Source: http://en.wikipedia.org/wiki/File:Ray trace diagram.svg



Implementation

Simplified pathtracing algorithm

• Upload triangle data to the graphics
memory using textures

• Fragment shader for each pixel

Launch a ray from the camera through the pixel

{

Intersect the ray with all triangles

Record the color at the closest hit point

Launch a secondary ray from the hit point

Repeat until the ray hits a light source

}

Pixel color = BRDF * cos / pdf * light color



Implementation

Simplified pathtracing algorithm

• Upload triangle data to the graphics
memory using textures

• Fragment shader for each pixel

Launch a ray from the camera through the pixel

{

Intersect the ray with all triangles

Record the color at the closest hit point

Launch a secondary ray from the hit point

Repeat until the ray hits a light source

}

Pixel color = BRDF * cos / pdf * light color



Challenge 1 - long shaders fail to compile

• Some shader compilers unroll loops - in particular on Windows
(ANGLE OpenGL to DirectX translation)

Launch a ray from the camera through the pixel

{

Intersect the ray with all triangles

Record the color at the closest hit point

Launch a secondary ray from the hit point

Repeat until the ray hits a light source

}

Pixel color = surface colors * light color

• Inner loop over ray-triangle intersections ∼ 1000

• Outer loop over secondary bounces ∼ 5

• Our shader fails to compile on Windows!



Challenge 1 - long shaders fail to compile

• Some shader compilers unroll loops - in particular on Windows
(ANGLE OpenGL to DirectX translation)

Launch a ray from the camera through the pixel

{

Intersect the ray with all triangles

Record the color at the closest hit point

Launch a secondary ray from the hit point

Repeat until the ray hits a light source

}

Pixel color = surface colors * light color

• Inner loop over ray-triangle intersections ∼ 1000

• Outer loop over secondary bounces ∼ 5

• Our shader fails to compile on Windows!



Challenge 1 - long shaders fail to compile

• Some shader compilers unroll loops - in particular on Windows
(ANGLE OpenGL to DirectX translation)

Launch a ray from the camera through the pixel

{

Intersect the ray with all triangles

Record the color at the closest hit point

Launch a secondary ray from the hit point

Repeat until the ray hits a light source

}

Pixel color = surface colors * light color

• Inner loop over ray-triangle intersections ∼ 1000

• Outer loop over secondary bounces ∼ 5

• Our shader fails to compile on Windows!



Challenge 1 - long shaders fail to compile

• Some shader compilers unroll loops - in particular on Windows
(ANGLE OpenGL to DirectX translation)

Launch a ray from the camera through the pixel

{

Intersect the ray with all triangles

Record the color at the closest hit point

Launch a secondary ray from the hit point

Repeat until the ray hits a light source

}

Pixel color = surface colors * light color

• Inner loop over ray-triangle intersections ∼ 1000

• Outer loop over secondary bounces ∼ 5

• Our shader fails to compile on Windows!



Challenge 1 - long shaders fail to compile

• Some shader compilers unroll loops - in particular on Windows
(ANGLE OpenGL to DirectX translation)

Launch a ray from the camera through the pixel

{

Intersect the ray with all triangles

Record the color at the closest hit point

Launch a secondary ray from the hit point

Repeat until the ray hits a light source

}

Pixel color = surface colors * light color

• Inner loop over ray-triangle intersections ∼ 1000

• Outer loop over secondary bounces ∼ 5

• Our shader fails to compile on Windows!



Challenge 1 - long shaders fail to compile

• Solution: Trace each secondary bounce in a separate pass

• We need to store the hit record between each pass
• Hit position (3 floats)
• Ray direction (3 floats)
• Hit material (1 int)
• Surface normal (3 floats)
• Accumulated color (3 floats)

• Unfortunately WebGL only supports a single render target,
i.e., we can only transfer four floats between two passes

• We must encode the hit record to fit in just four floats



Challenge 1 - long shaders fail to compile

• Solution: Trace each secondary bounce in a separate pass

• We need to store the hit record between each pass
• Hit position (3 floats)
• Ray direction (3 floats)
• Hit material (1 int)
• Surface normal (3 floats)
• Accumulated color (3 floats)

• Unfortunately WebGL only supports a single render target,
i.e., we can only transfer four floats between two passes

• We must encode the hit record to fit in just four floats



Challenge 1 - long shaders fail to compile

• Solution: Trace each secondary bounce in a separate pass

• We need to store the hit record between each pass
• Hit position (3 floats)
• Ray direction (3 floats)
• Hit material (1 int)
• Surface normal (3 floats)
• Accumulated color (3 floats)

• Unfortunately WebGL only supports a single render target,
i.e., we can only transfer four floats between two passes

• We must encode the hit record to fit in just four floats



Challenge 1 - long shaders fail to compile

• Solution: Trace each secondary bounce in a separate pass

• We need to store the hit record between each pass
• Hit position (3 floats)
• Ray direction (3 floats)
• Hit material (1 int)
• Surface normal (3 floats)
• Accumulated color (3 floats)

• Unfortunately WebGL only supports a single render target,
i.e., we can only transfer four floats between two passes

• We must encode the hit record to fit in just four floats



Challenge 2 - acceleration structure

Launch a ray from the camera through the pixel

{

Intersect the ray with all triangles

Record the color at the closest hit point

Launch a secondary ray from the hit point

Repeat until the ray hits a light source

}

Pixel color = BRDF * cos / pdf * light color

• Linear scaling with number of triangles

• Use an acceleration structure



Challenge 2 - acceleration structure

Launch a ray from the camera through the pixel

{

Intersect the ray with all triangles

Record the color at the closest hit point

Launch a secondary ray from the hit point

Repeat until the ray hits a light source

}

Pixel color = BRDF * cos / pdf * light color

• Linear scaling with number of triangles

• Use an acceleration structure



Challenge 2 - acceleration structure

Bounding volume hierachy

Source: http://en.wikipedia.org/wiki/File:Example of bounding volume hierarchy.svg

Traversal:

• Intersect with A

• Descent through B and push C on a stack
• Intersection test with the primitives in the leafs of B
• Fetch the node from the top of the stack (C)
• Intersection test with the primitives in the leafs of C



Challenge 2 - acceleration structure

Bounding volume hierachy

Source: http://en.wikipedia.org/wiki/File:Example of bounding volume hierarchy.svg

Traversal:

• Intersect with A

• Descent through B and push C on a stack
• Intersection test with the primitives in the leafs of B
• Fetch the node from the top of the stack (C)
• Intersection test with the primitives in the leafs of C



Challenge 2 - acceleration structure

Bounding volume hierachy

Source: http://en.wikipedia.org/wiki/File:Example of bounding volume hierarchy.svg

Traversal:

• Intersect with A
• Descent through B and push C on a stack

• Intersection test with the primitives in the leafs of B
• Fetch the node from the top of the stack (C)
• Intersection test with the primitives in the leafs of C



Challenge 2 - acceleration structure

Bounding volume hierachy

Source: http://en.wikipedia.org/wiki/File:Example of bounding volume hierarchy.svg

Traversal:

• Intersect with A
• Descent through B and push C on a stack
• Intersection test with the primitives in the leafs of B

• Fetch the node from the top of the stack (C)
• Intersection test with the primitives in the leafs of C



Challenge 2 - acceleration structure

Bounding volume hierachy

Source: http://en.wikipedia.org/wiki/File:Example of bounding volume hierarchy.svg

Traversal:

• Intersect with A
• Descent through B and push C on a stack
• Intersection test with the primitives in the leafs of B
• Fetch the node from the top of the stack (C)

• Intersection test with the primitives in the leafs of C



Challenge 2 - acceleration structure

Bounding volume hierachy

Source: http://en.wikipedia.org/wiki/File:Example of bounding volume hierarchy.svg

Traversal:

• Intersect with A
• Descent through B and push C on a stack
• Intersection test with the primitives in the leafs of B
• Fetch the node from the top of the stack (C)
• Intersection test with the primitives in the leafs of C



Challenge 2 - acceleration structure

Bounding volume hierachy - tree traversal

• Shaders are suited for parallel execution of simple tasks

• No support for dynamic memory allocation needed for a stack

• Fixed-size stack can be implemented in recent versions of the
OpenGL shading language - but not in WebGL

• We have implemented two stackless BVH traversal algorithms

Laine HPG 2010: Restart Trail for Stackless BVH traversal

Hapala SCCG 2011: Efficient Stack-less BVH Traversal for Ray Tracing



Challenge 2 - acceleration structure

Bounding volume hierachy - tree traversal

• Shaders are suited for parallel execution of simple tasks

• No support for dynamic memory allocation needed for a stack

• Fixed-size stack can be implemented in recent versions of the
OpenGL shading language - but not in WebGL

• We have implemented two stackless BVH traversal algorithms

Laine HPG 2010: Restart Trail for Stackless BVH traversal

Hapala SCCG 2011: Efficient Stack-less BVH Traversal for Ray Tracing



Challenge 2 - acceleration structure

Bounding volume hierachy - tree traversal

• Shaders are suited for parallel execution of simple tasks

• No support for dynamic memory allocation needed for a stack

• Fixed-size stack can be implemented in recent versions of the
OpenGL shading language - but not in WebGL

• We have implemented two stackless BVH traversal algorithms

Laine HPG 2010: Restart Trail for Stackless BVH traversal

Hapala SCCG 2011: Efficient Stack-less BVH Traversal for Ray Tracing



Challenge 2 - acceleration structure

Bounding volume hierachy - tree traversal

• Shaders are suited for parallel execution of simple tasks

• No support for dynamic memory allocation needed for a stack

• Fixed-size stack can be implemented in recent versions of the
OpenGL shading language - but not in WebGL

• We have implemented two stackless BVH traversal algorithms

Laine HPG 2010: Restart Trail for Stackless BVH traversal

Hapala SCCG 2011: Efficient Stack-less BVH Traversal for Ray Tracing



Benchmark



Benchmark setup

• Nvidia GeForce 470GTX

• Xeon E5620 Quad, 2.4 GHz

• Firefox 21 on linux

• 512px x 512px

• 4 secondary bounces



Benchmark - traversal

• Stackless traversal revisits internal nodes

• Shortstack algorithm depends on efficient bitwise operations



Benchmark - traversal

• Stackless traversal revisits internal nodes

• Shortstack algorithm depends on efficient bitwise operations



Benchmark - traversal

• Stackless traversal revisits internal nodes

• Shortstack algorithm depends on efficient bitwise operations



Benchmark - multiple passes



Outlook

• Looking for real-world applications

• Next version of WebGL will probably be based on OpenGL ES
3.0, hopefully enables support for

• Bitwise operations (efficient shortstack BVH traversal)
• Multiple render targets (save hit record between passes)
• Full array support (stack implementation)



Outlook

• Looking for real-world applications

• Next version of WebGL will probably be based on OpenGL ES
3.0, hopefully enables support for

• Bitwise operations (efficient shortstack BVH traversal)
• Multiple render targets (save hit record between passes)
• Full array support (stack implementation)



Thank you

• Visit our blog:
http://cg.alexandra.dk

• Demos:
http://cg.alexandra.dk/files/pathtracer/?scene=XmasScene
http://cg.alexandra.dk/files/pathtracer/?scene=motorcycle

http://cg.alexandra.dk
http://cg.alexandra.dk/files/pathtracer/?scene=XmasScene
http://cg.alexandra.dk/files/pathtracer/?scene=motorcycle

