

How to build your own 3D scanner

Jakob Wilm, PhD Student

Section for Image Analysis and Computer Graphics, DTU Informatics Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet

Microsoft Kinect

Cost	dkr 1.600,-
Resolution	640 x 480
Speed	25 fps
Accuracy	~1 mm
Robustness	high
Hackability	;-

Mesa SwissRanger SR4000

Cost	dkr 22.000,-
Resolution	176 x 144
Speed	54 fps
Accuracy	~5 mm
Robustness	low
Hackability	;-(

Microsoft Kinect 2

Cost	dkr 2.000,-
Resolution	512 x 424
Speed	30 fps
Accuracy	~5 mm
Robustness	good
Hackability	;-

DTU Scanner – SLStudio

Cost	dkr 10.000,-
Resolution	variable
Speed	variable
Accuracy	variable
Robustness	variable
Hackability	;->

Í	× = D SLStudio
(Start Scan Stop Scan Save Point Cloud Save Screenshot Perform Calibration
Hi	
(
/e	
a	PCPS: 10.99

Triangulation

Triangulation

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \approx \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Triangulation

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \approx \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\begin{bmatrix} u_c \boldsymbol{P}_c(3) - \boldsymbol{P}_c(1) \\ v_c \boldsymbol{P}_c(3) - \boldsymbol{P}_c(2) \\ u_p \boldsymbol{P}_p(3) - \boldsymbol{P}_p(1) \end{bmatrix} \cdot \boldsymbol{Q} = 0$$

Phase Shifting Interferometry

$$I_n^p(x^p,y^p) = \frac{1}{2} + \frac{1}{2} \cos \biggl(2\pi \biggl(\frac{n}{N} - y^p \biggr) \biggr)$$

$$B_{\mathcal{R}}^c = \sum_{n=0}^{N-1} I_n^c(x^c, y^c) \cos\left(rac{2\pi n}{N}
ight)$$

$$B_{\mathcal{I}}^{c} = \sum_{n=0}^{N-1} I_{n}^{c}(x^{c}, y^{c}) \sin\left(\frac{2\pi n}{N}\right)$$

$$I_n^c(x^c, y^c) = A^c + B^c \cos\left(\frac{2\pi n}{N} - \theta\right)$$

$$heta = \mathbf{\measuredangle}(B^c_{\mathcal{R}} + jB^c_{\mathcal{I}}) = \arctaniggl\{rac{B^c_{\mathcal{I}}}{B^c_{\mathcal{R}}}iggr\}$$

$$A^{c} = \frac{1}{N} \sum_{n=0}^{N-1} I_{n}^{c}(x^{c}, y^{c})$$

Frequence Domain Interpretation

Lau, Liu, Hassebrook (2010). Opt letters, 35(14)

SLStudio

- Modular platform
- Enables 20fps pointclouds (3 frame PSI)
- Key components:
 - -Projection interface
 - -Industrial camera interface
 - -Coding/Decoding & Fast reconstruction
 - -Calibration
 - -In development: Rigid body tracking
- $\bullet \sim 10k$ LOC

ο cl

Reconstruction

$$\begin{bmatrix} u_c \\ v_c \\ 1 \end{bmatrix} = \mathbf{P}_c Q \quad \text{and} \quad \begin{bmatrix} u_p \\ v_p \\ 1 \end{bmatrix} = \mathbf{P}_p Q$$

$$\begin{bmatrix} u_c \mathbf{P}_c(3) - \mathbf{P}_c(1) \\ v_c \mathbf{P}_c(3) - \mathbf{P}_c(2) \\ u_p \mathbf{P}_p(3) - \mathbf{P}_p(1) \end{bmatrix} \cdot Q = 0$$

$$250k \text{ points} = 20ms!!$$

$$250k \text{ points} = 20ms!!$$

$$C_{i,j,l}^k = \det\left(\mathbf{P}_c(i), \mathbf{P}_c(j), \mathbf{P}_p(l), \mathbf{e}_k\right)$$

$$Q_k = C_{1,2,1}^k - u_p C_{3,2,1}^k - v_p C_{1,3,1}^k - u_c C_{1,2,2}^k + u_c u_p C_{3,2,2}^k + u_c v_p C_{1,3,2}^k$$

Valkenburg, McIvor (1998). Img Vis Comp. 16(2), 99-110.

📥 🕇 🚛 🛋 📢 14:11 🔅

Hardware Trigger

Parallelization

Parallelization

Local Homographies

$$\hat{\boldsymbol{H}} = \underset{\boldsymbol{H}}{\arg\min} \|\boldsymbol{H}q_{ci} - q_{pi}\| \quad \forall \quad q_{ci} \in \mathcal{N}_{q_c}, q_{pi} \in \mathcal{N}_{q_p}$$
$$\hat{q_p} = \hat{\boldsymbol{H}}q_c$$

Moreno, Taubin (2012). 3DIMPVT. 2012(77)

Local Homographies

Computer Vision assisted Motion Correction in Medical Imaging

DORADOMIC

SIEMENS

Biograph mMR

Motion Tracking

Pose Estimation

Pose Estimation

Wilm et al. (2011), Proc SCIA, LNCS 6688

Fin