#### Elementacular

A new generation of Maya plugin for interactive modeling and instant visualization of volumetric clouds and rocks

Jesper Børlum

#### **Partners**



# SUNDAY®







## Background



- Creating complex organic objects like clouds or rocks is difficult.
- Requires a highly specialized knowledge about simulation and rendering.
- Danish creative companies are not large enough to support these specialists.



# Background







## Background





# Taming the Elements



- User-guided procedural content generation with instant feedback to make even the most advanced setups possible.
- High-quality real-time rendering which allows for continuous visual quality tweaking.
- Less time spent waiting.
  - More time for what really matters Happy customers!



# I present to you – Elementacular!





Oh well! – Turns out it's pretty hard to get right.



# Current Results – Cloud Module







# Current Results – Rock Module











# Data Representation





Antoine Bouthors et. al.: "Interactive multiple anisotropic scattering in clouds"



# Technique Overview





#### Rasterization-based voxelization



 Based on Cyril Crassin and Simon Green: "Octree-Based Sparse Voxelization Using the GPU Hardware Rasterizer."











Viewport 2.0

## Why do we need to floodfill?



- Voxelization produces voxels for each triangle fragment.
- Trouble in paradise A lot of geometry is self-intersecting.
- We need only the outer voxels.
- Tag known outer voxels and floodfill.





# Compute Shaders – Finally!



- Easy-to-use general-purpose compute.
- OpenGL 4.3 feature.
- Very powerful coupled with Image load/store.
  - Read/write to 3D texture at arbitrary positions.
  - Perform atomic operations on storage.



# Floodfilling on the GPU



- Comprised of two compute shaders.
- Compute Shaders execute per voxel.
- Tag initial outside voxels if visible from all three axes.
- Grow outside voxels by iterating.



#### Dilation and Distance Estimation



- Single compute shader.
- Propagate distance information from initial surface voxels:
  - If voxel is tagged as outside and not part of the initial surface, pull minimum distance.
  - Combine using imageAtomicMin.
  - Complicated by the fact that atomic operations only work on 32bit integers.



# Making Some Noise



- Specialized compute shaders.
- A major part of getting the look right.
- Fractals based on GPU generated Simplex and Worley noise.
- Based on techniques outlined in Siggraph 2011 Course "Production Volume Rendering Systems".



# Making Some Noise









# Making Some Noise







# Lighting the Volumes



- Inside participating media light changes direction by hitting the particles.
- Usually handled separately.
  - Single scattering events.
  - Multiple scattering events.





# Real-time single scattering





Prohibitively slow for real-time.



# Real-time single scattering



- Exploit the fact that inscattered irradiance can be separated from primary ray absorption.
- Update only when lights are dirtied.
- March towards each light accumulating the irradiance into a separate light buffer using compute shader.
- When raymarching Use light buffer instead of marching to light.



# Faking multiscatter effects



Clouds diffuse most of the light.





# Faking multiscatter effects



Hard to do in real-time using known techniques.

Exploit the fact that clouds are very diffuse.

Simply add a colored emissive term to marching.



# Looking ahead



Focus has been on stills / matte / static volumes.

Procedural fluid dynamics.

Reparameterization of noise generation to allow animated models.



# Apply for Beta



Come help us test it out!

Maya 2013 / 2014.

http://www.elementacular.com



# Funding







# Questions? Thank you for your attention



