
Paper presented at the 2014 IEEE International Ultrasonics Symposium

Synthetic Aperture Sequential Beamforming im-
plemented on multi-core platforms

Thomas Kjeldsen1, Lee Lassen1, Martin Christian Hemmsen2, Carsten Kjær3,
Borislav G. Tomov2, Jesper Mosegaard1, and Jørgen Arendt Jensen2

1Computer Graphics Lab, Alexandra Institute, DK-8200 Aarhus N, Denmark

2Center for Fast Ultrasound Imaging Dept. of Elec. Eng. Technical University of
Denmark DK-2800 Lyngby, Denmark

3BK Medical, Mileparken 34, DK-2730 Herlev, Denmark

To be published in the Proceedings of 2014 IEEE International Ultrasonics Sympo-
sium.

1

Synthetic Aperture Sequential Beamforming
implemented on multi-core platforms

Thomas Kjeldsen1, Lee Lassen1, Martin Christian Hemmsen2, Carsten Kjær3, Borislav G. Tomov2,
Jesper Mosegaard1, and Jørgen Arendt Jensen2

1Computer Graphics Lab, Alexandra Institute, DK-8200 Aarhus N, Denmark
2Center for Fast Ultrasound Imaging Dept. of Elec. Eng. Technical University of Denmark DK-2800 Lyngby, Denmark

3BK Medical, Mileparken 34, DK-2730 Herlev, Denmark

Abstract—This paper compares several computational ap-
proaches to Synthetic Aperture Sequential Beamforming (SASB)
targeting consumer level parallel processors such as multi-core
CPUs and GPUs. The proposed implementations demonstrate
that ultrasound imaging using SASB can be executed in real-
time with a significant headroom for post-processing. The CPU
implementations are optimized using Single Instruction Multiple
Data (SIMD) instruction extensions and multithreading, and
the GPU computations are performed using the APIs, OpenCL
and OpenGL. The implementations include refocusing (dynamic
focusing) of a set of fixed focused scan lines received from a BK
Medical UltraView 800 scanner and subsequent image processing
for B-mode imaging and rendering to screen. The benchmarking
is performed using a clinically evaluated imaging setup consisting
of 269 scan lines x 1472 complex samples (1.58 MB per frame, 16
frames per second) on an Intel Core i7 2600 CPU with an AMD
HD7850 and a NVIDIA GTX680 GPU. The fastest CPU and GPU
implementations use 14% and 1.3% of the real-time budget of 62
ms/frame, respectively. The maximum achieved processing rate
is 1265 frames/s.

I. INTRODUCTION

Originally, medical ultrasound imaging systems were im-
plemented using analog beamformers [1]. Later, digital beam-
formers were introduced and traditionally implemented using
dedicated hardware [2]. With the recent development in con-
sumer level parallel processors, such as multi-core CPUs and
graphics processing units (GPUs), it is advantageous to move
the beamformer to software for improved flexibility and cost
reduction [3].

Recent advances in beamformer technology and processing
performance have resulted in increased interest in synthetic
aperture imaging implemented on GPU [4], [5]. One challenge
is, however, that beamforming requires a high data bandwidth.
A typical system could have 128 channels and use a 12-bit 40
MHz sampling system. This generates 128×40×106Hz×2B =
9.54 GB/s which is problematic to transfer into a consumer
oriented system, e.g., for a GPU, data needs to be transferred
over a relatively slow PCI-Express bus.

Synthetic Aperture Sequential Beamforming (SASB) [6]
is a technique that produces image quality comparable to
dynamical receive focusing [7], but requires much lower data
bandwidth (25.3 MB/s for the setup used in the present
work). The low data bandwidth is achieved using a dual stage
procedure which reduces the data rate enough to substitute

the analog communication link between probe and processing
unit with wireless technology [8]. This paper presents several
implementations of SASB for real-time imaging utilizing
modern multi-core platforms. The hypothesis is, that current
consumer level parallel processors, multi-core CPU and GPU,
are fast enough to execute SASB in real-time.

II. MATERIALS AND METHODS

The basic idea in SASB is to use two separate beamformers.
The first beamformer creates fixed focused scan lines. The
final image is created in the second beamformer by refocusing
these scan lines. This study assumes that the first beamformer
is implemented in an ultrasound scanner which transfers the
outcoming fixed-focused scan lines to a PC for refocusing
and subsequent image processing for B-mode imaging. The
particular PC processing steps in this work include upsampling
and frequency shift of baseband I/Q data, beamforming of
Nl lines with each NS complex samples, amplitude detection,
log-compression, and scan-conversion to a final image. All
these second stage processing algorithms are implemented on
the PC with special focus on efficient utilization of multcore
CPUs or GPUs. The following theory section focuses mainly
on the beamformation since this is the most complex and time
consuming component.

A. Second stage beamformation
The second stage beamformer creates an image, sampled at

the position ~rip as the sum over Nl first stage lines sk(t) with
fixed focus at rfocus,k [9], [10]

I(~rip) =

Nl−1∑

k=0

W (~rfocus,k, ~rip)sk(t(~rip, ~rfocus,k)), (1)

where W (~rfocus,k, ~rip) is an apodization function. t is the
delay t(~rip, ~rfocus,k) = (2dfocus ± 2|~rip − ~rfocus,k|)/c where c
is the speed of sound, dfocus is the focus depth, and the sign
depends on whether the image point is above or below the
focus point.

For a convex array, the image samples are conveniently
expressed in a polar coordinate system ~r = (r, φ) as shown in
Fig. 1, and calculated as

I(r, φ) =

Nl−1∑

k=0

W (r, |φ− φk|)sk(t(r, φ− φk)), (2)

2

~rfocus,k = (rfocus, φk)

(0, 0)

φ− φk

~r i
p
−
~r f
o
cu

s,
k

~rip = (r, φ)

} dfocus

r sin(φ− φk)

r cos(φ− φk)

Fig. 1. Polar coordinates used in (2)-(5). The kth first stage line affects image
points in the coloured area. The apodization weight is indicated by the color
intensity.

where φk is the direction of the kth scanline. The delay is

t(r, φ) =
2

c

(
dfocus ±

√
r2 + r2focus − 2rrfocus cosφ

)
, (3)

and the weight W depends only on the axial and lateral
distances between the focus and the image points as indicated
by the dashed lines in Fig. 1. It is now assumed that the image
points are chosen along the scanlines and that the angular
spacing between all consecutive scanlines is constant, ∆φ

I(ri, φj) =

Nl−1∑

k=0

W (ri, |k − j|∆φ)sk(t(ri, |k − j|∆φ)). (4)

Changing the summation index so that k′ = k − j and
rearranging the terms in the sum

I(ri, φj) = Wi0sj(ti0)+

N(ri)∑

k′=1

Wik′ [sj+k′(tik′) + sj−k′(tik′)] ,

(5)
i.e., the apodization weights and the delays need only to be
known at discrete values. Here Wik = W (ri, k∆φ) and tik =
t(ri, k∆φ), which can easily be precomputed for a given set
of scanning parameters. In (5) the depth-dependent upper limit
of the sum N(ri) indicates that image formation in ~rip is only
affected by a limited set of neighboring lines [9]. Furthermore,
sj(t) is defined to be zero for j < 0 and j ≥ Nl.

The second stage beamforming formulation in (5) essen-
tially only consists of table lookups, interpolations into sk(t),
and a number of products and summations. While this type of
algorithm is quite data intensive, it only involves basic arith-
metic operations. Hence, efficient implementations depend
both on fast memory access and parallel arithmetic operations.

Even though the present discussion focuses on a convex
array in polar coordinates, an expression similar to (5) is
easily derived in Cartesian coordinates for a linear array. The
discussions below will, therefore, also apply to linear arrays.

B. Optimized SIMD implementation

Modern x86 CPUs support Single Instruction Multiple Data
(SIMD) instruction extensions, such as Streaming SIMD Ex-
tensions (SSE) or Advanced Vector Extensions (AVX). These

...

...

..
.

..
.

s0(t0) s1(t0) s2(t0) s3(t0) sNl−1(t0)

s0(t1) s1(t1) s2(t1) s3(t1) sNl−1(t1)

s0(t2) s1(t2) s2(t2) s3(t2) sNl−1(t2)

s0(t3) s1(t3) s2(t3) s3(t3) sNl−1(t3)

s0(tNS−1) s1(tNS−1) s2(tNS−1) s3(tNS−1) sNl−1(tNS−1)

Fig. 2. Memory layout for Nl first stage lines with NS temporal samples.
The rows must be contiguous in memory for efficient SIMD utilization.

for i← 0 : Ns − 1 do . Loop over depth samples
for j ← 0 : Nl/4− 1 do . Loop over every 4th scanline

I ← 0 . I is an SSE register
for k ← 0 : Nl − 1 do

W ← weight[i, k]
if W = 0 then

break
end if
t← delay[i, k]
s← mm load ps(samples[t, 4 ∗ j + k]) . Load aligned floats to SSE register
I ← I + W ∗ s
if k > 0 then

s← mm load ps(samples[t, 4 ∗ j − k])
I ← I + W ∗ s

end if
end for

end for
end for

Fig. 3. Beamformation with SIMD optimizations. SIMD registers are indi-
cated by bold faces.

extensions enable certain operations, e.g. load, store, and
arithmetics, on four (SSE) or eight (AVX) single precision
floating point numbers in a single instruction. However, these
extensions can only be fully utilized if data is properly aligned
in memory. For simplicity, the formulas below assume four
way parallelism, corresponding to SSE. Generalization to eight
way parallelism for AVX is straightforward.

One way to use SIMD is to beamform four image points in
parallel. If these image points are chosen as consecutive points
in the angular coordinate {φ4j , φ4j+1, φ4j+2, φ4j+3}, (5) can
be written in vectorized form



I(ri, φ4j+0)
I(ri, φ4j+1)
I(ri, φ4j+2)
I(ri, φ4j+3)


 = Wi0




s4j+0(ti0)
s4j+1(ti0)
s4j+2(ti0)
s4j+3(ti0)


+

N(ri)∑

k=1

Wik







sk+4j+0(tik)
sk+4j+1(tik)
sk+4j+2(tik)
sk+4j+3(tik)


+




s−k+4j+0(tik)
s−k+4j+1(tik)
s−k+4j+2(tik)
s−k+4j+3(tik)





 . (6)

Now it is assumed that the Nl first stage lines are sampled in
NS temporal samples, and these samples are stored in memory
(cf. Fig. 2) in row-major format. Note that emissions are
most naturally received sequentially, i.e., column by column
in Fig. 2 and, hence, the assumed layout requires an initial
transposition in memory. The row-major format ensures that
all vectors on the right hand side of (6) lie contiguously in
memory, at least if a nearest neighbor interpolation scheme is
chosen for sk(t). Other interpolation schemes that evaluate
sk(t) as a weighed sum of samples sk(tsampled) in the
neighborhood of t also only involve vectors that are contiguous
in memory. The workflow is summarized in pseudocode in
Fig. 3, where the loop over j is reduced by a factor of four

3

compared to a non-SIMD version. This lowers the instruction
count for the total loop significantly, which often leads to
improved performance.

In addition to SIMD, current CPUs also contain multiple
cores that can operate concurrently in separate threads. It is
very easy to distribute the workload when beamforming a full
image by, e.g., distributing the radial coordinates in separate
threads. The present work uses OpenMP to distribute the outer
loop in Fig. 3 among multiple threads.

C. Optimized GPU implementation

Current high-end Graphics Processing Units (GPUs) are
characterized by large internal memory bandwidths and more
than one thousand parallel processing units. This paper
presents GPU results using the two high level APIs, OpenCL
and OpenGL. OpenCL is specifically designed for computa-
tions using the GPU, while OpenGL was originally intended
for pure graphics applications. However, OpenGL can often
also be used for more general purpose computations, e.g.,
by calculating individual pixel values such as (5) in fragment
shaders, and storing results in offscreen framebuffers. The key
benefit of OpenGL over OpenCL is that OpenGL is supported
on a much broader range of devices, including mobile devices.

Obtaining a reasonably good performance on current GPUs
turns out to be somewhat simpler than the CPU implementa-
tion described in Sec. II-B. The reason is that the data in Fig. 2
can be stored in texture memory, which is cache optimized for
memory reads that are close both vertically and horizontally.
This caching mechanism turns out to be very efficient for the
present case where sk(t) is sampled repeatedly for adjacent
lines k. An actual profiling shows that the cache hit ratio is
more than 96% for the present case. Another advantage of
texture memory is that simple interpolation schemes, such as
nearest neighbor and bilinear, are implemented in hardware.

Utilization of texture memory provides good performance
without much programming effort. Even higher performance
can be achieved by hand-optimizing memory access and com-
pute core configurations to fit the underlying hardware, e.g.,
by using local memory cache within an OpenCL workgroup.

One common concern about GPU computing for real-
time processing is that data must be uploaded continuously
from main memory to GPU memory through a relatively
slow PCI-Express bus. The present work tries to hide this
transfer time by implementing a double buffered asynchronous
upload where upload of one frame is overlapped with the
processing of the preceeding frame in another buffer. Notice,
however, that the SASB algorithm itself efficiently reduces this
problem, because a significant data reduction occurs early in
the pipeline.

III. RESULTS

For the real-time implementation, image sequences are
acquired using an STI 3ML 3.5CLA192 convex transducer,
and consist of 269 emissions for each frame. The scanner
beamforms the received echo signals using a fixed receive
profile with subsequent transformation to baseband I/Q data.
This data is sampled 1472 times per emission and is then

transferred to a PC for second stage processing. The scanner
acquisition frame rate is 16 Hz, which requires that all
processing steps on the PC must be completed in 62 ms
for real-time performance. For benchmarking the maximum
computation rate of the various implementations, a 24-frame
prerecorded data set [11] is stored locally on the second stage
processing PC which makes it possible to simulate acquisition
rates of more than 1200 Hz. The recorded data set is acquired
using the same scan setup as the real-time implementation
described above.

All optimized implementations are validated with a straight-
forward calculation of (1) using Matlab. Figure 4 shows B-

Fig. 4. In-vivo B-mode images generated by (a) Matlab, (b) multithreaded
SIMD code written in C, (c) GPU using OpenGL, and (d) GPU using OpenCL.
The dynamic range is 60 dB.

mode images of the same data set generated by (a) Matlab,
(b) multithreaded SIMD code, (c) the GPU using OpenGL,
and (d) the GPU using OpenCL. All images agree very
well. Compared to (a), the root mean square errors are (b)
0.0044, (c) 0.0042, and (d) 0.0040 when the 8-bit grayscale
is mapped to [0,1]. The corresponding peak signal to noise
ratios are 47.23dB, 47.59dB, and 48.01dB for SIMD, OpenGL,
and OpenCL compared to Matlab, respectively. The small
differences can be explained by the fact that the optimized
codes use only up to 32-bit numerical representation, while
Matlab works entirely in 64 bits double precision.

A. Evaluation of the processing performance

Benchmark timings are obtained with an Intel Core i7 2600
CPU (8 GB DDR3 memory) with an AMD HD7850 and an
Nvidia GTX 680 GPU (both with 2 GB GDDR5 memory)
connected on a PCI-Express 2.0x16 port.

The refocusing of the fixed focused scan lines and subse-
quent image processing for B-mode imaging are implemented
as shown in Fig. 5. The CPU code is written in C with
SIMD intrinsics and OpenMP multithreading. Timings are
measured with the C++ std::chrono::steady clock class for
each subprocess in Fig. 5 (a) as an average over 1000 repe-
titions. The CPU has four hyperthreaded cores which provide
a total of eight logical processors to the operating system
and, correspondingly, CPU benchmarks are performed with
up to eight threads. Each of the three last GPU passes in
Fig. 5 (b) corresponds to an OpenCL kernel or an OpenGL
shader program where intermediate results are rendered to an
OpenCL image or an OpenGL framebuffer object. The reason
why the GPU workflow contains fewer steps than the CPU
is that it is relatively expensive to change framebuffer state
and, thus, it is desirable to minimize the number of passes.
High precision timings on the GPUs are measured with AMD
CodeXL, AMD GPU PerfStudio, and NVIDIA Nsight.

4

2×16 bit per sample 269×1472 samples

Upload I/Q data to GPU memory

2×16 bit per sample 269×1472 samples

Upsampling & frequency shift

2×16 bit per sample 269×2944 samples

2nd stage beamforming, envelope detection,

& log compression

8 bit per sample 269×1472 samples

Scanconversion & rendering to screen

8 bit per sample 512×512 samples

(b)

2×16 bit per sample 269×1472 samples

Upsampling & frequency shift

2×16 bit per sample 269×2944 samples

2nd stage beamforming

& envelope detection

32 bit per sample 269×1472 samples

Log compression

8 bit per sample 269×1472 samples

Scanconversion

8 bit per sample 512×512 samples

Upload image data to GPU memory

& rendering to screen

8 bit per sample 512×512 samples

(a)

Fig. 5. Workflow diagram for the CPU (a) and GPU (b) implementations.

 0.1

 1

 10

 100

 1000

 10000

B
e

a
m

fo
rm

in
g

 t
im

e
 (

m
s
)

Simple Precompute
delay+weight

Mem. align
with AVX

OpenGL OpenCL

2950

699

96.7

28.5 20.9

5.4

0.68 0.70
0.44 0.56

Intel Core I7 1 thread
Intel Core I7 8 threads

AMD HD7850
NVIDIA GTX680

CPU GPU

Fig. 6. Beamformation time with different levels of optimization. All CPU
codes are written in C and compiled with GCC 4.8 using “-O3” compile flags.
The three CPU series “Simple”, “Precompute”, and “Mem. align” correspond
to (4), (5), and (6), respectively. Only the final, optimized OpenGL and
OpenCL GPU results are shown. Note the logarithmic scale.

Figure 6 shows how various optimization steps improve the
beamformation timing. For a well written initial C implemen-
tation of (4), the beamformation takes 2950 ms (699 ms with
multithreading), i.e., far from the real-time limit of 62 ms
for all second stage operations. Precomputation of delays and
weights, and reordering of the summation in (5) give a speedup
factor of ∼ 25 − 30 which is fast enough for real-time pro-
cessing when using multiple threads. Next, changing memory
layout in order to take advantage of SIMD instructions, cf. (6),
yields another factor of ∼ 3−5 to enable even singlethreaded
real-time performance. Finally, Fig. 6 shows the optimized
GPU timings which are around an order of magnitude faster
than the fastest CPU timing. The results reported for OpenCL
are optimized with respect to workgroup configuration and
caching strategies using local memory within a workgroup.
These optimizations make OpenCL perform slightly better
than OpenGL on the AMD GPU.

Aggregated timings for all second stage processing steps
are summarized in Fig. 7 for the best optimized multithreaded
CPU and GPU implementations. The figure clearly shows that
all timing results are far below the real-time limit. For the
CPU, SIMD provides good overall speedup factors (∼ 2.5
for SSE and ∼ 4.2 for AVX), and, in accordance with the
beamformation in isolation (Fig. 6), the total GPU results are
again around an order of magnitude faster than the fastest CPU
result.

IV. CONCLUSION

Several implementations of Synthetic Aperture Sequential
Beamforming (SASB) targeting consumer level parallel pro-

 0

 5

 10

 15

 20

 25

 30

 35

T
im

in
g

 (
m

s
)

No extension SSE AVX
1 lane 4 lanes 8 lanes

OpenGL OpenCL OpenGL OpenCL

36.20

14.21

8.57

1.10 0.79 1.23 1.28

Intel Core i7 2600 CPU (8 threads) AMD HD7850 GPU NVIDIA GTX680 GPU

 0

 5

 10

 15

 20

 25

 30

 35

T
im

in
g

 (
m

s
)

No extension SSE AVX
1 lane 4 lanes 8 lanes

OpenGL OpenCL OpenGL OpenCL

Data transfer
Scan conversion

Log. compression
Beamformation

Upsampling

Intel Core i7 2600 CPU (8 threads) AMD HD7850 GPU NVIDIA GTX680 GPU

 0

 0.5

 1

T
im

in
g

 (
m

s
)

OpenGL OpenCL OpenGL OpenCL

AMD HD7850 GPU NVIDIA GTX680 GPU

Fig. 7. Total benchmark timings on CPU and GPU for all second stage
processing steps. The resolution of the final image was 512×512 pixels.

cessors such as multi-core CPUs and GPUs are presented. The
fastest CPU and GPU implementations use 14% and 1.3%
of the real-time budget of 62 ms/frame, respectively. These
results demonstrate that SASB can be executed in-time for
real-time ultrasound imaging, even with much lower hardware
specifications than benchmarked, and with significant head-
room for image post-processing.

ACKNOWLEDGMENT

This work was supported by grant 82-2012-4 from the
Danish National Advanced Technology Foundation and by BK
Medical.

REFERENCES

[1] K. E. Thomenius, “Evolution of ultrasound beamformers,” in Proc. IEEE
Ultrason. Symp., vol. 2, 1996, pp. 1615–1621.

[2] B. D. Steinberg, “Digital beamforming in ultrasound,” IEEE Trans.
Ultrason., Ferroelec., Freq. Contr., vol. 39, pp. 716–721, 1992.

[3] C. J. Thompson, S. Hahn, and M. Oskin, “Using modern graphics
architectures for general-purpose computing: a framework and analysis,”
in Proc of IEEE/ACM International Symposium on Microarchitecture,
2002, pp. 306–317.

[4] B. Y. S. Yiu, I. K. H. Tsang, and A. C. H. Yu, “GPU-based beamformer:
Fast realization of plane wave compounding and synthetic aperture
imaging,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 58, no. 7,
pp. 1698–1705, 2011.

[5] J. M. Hansen, D. Schaa, and J. A. Jensen, “Synthetic aperture beam-
formation using the gpu,” in Proc. IEEE Ultrason. Symp., 2011, pp.
373–376.

[6] M. C. Hemmsen, J. M. Hansen, and J. A. Jensen, “Synthetic Aperture
Sequential Beamformation applied to medical imaging using a multi
element convex array transducer,” in EUSAR, Apr. 2012, pp. 34–37.

[7] M. Hemmsen, P. M. Hansen, T. Lange, J. M. Hansen, K. L. Hansen,
M. B. Nielsen, and J. A. Jensen, “In vivo evaluation of synthetic aperture
sequential beamforming,” Ultrasound Med. Biol., vol. 38, no. 4, pp. 708–
716, 2012.

[8] M. C. Hemmsen, T. Kjeldsen, L. Lassen, C. Kjær, B. G. Tomov,
J. Mosegaard, and J. A. Jensen, “Implementation of synthetic aperture
imaging on a hand-held device,” in Proc. IEEE Ultrason. Symp., 2014,
p. in press.

[9] J. Kortbek, J. A. Jensen, and K. L. Gammelmark, “Synthetic aperture
sequential beamforming,” in Proc. IEEE Ultrason. Symp., 2008, pp. 966–
969.

[10] ——, “Sequential beamforming for synthetic aperture imaging,” Ultra-
sonics, vol. 53, no. 1, pp. 1–16, 2013.

[11] M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S.
Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a
versatile research data acquisition system using a commercially available
medical ultrasound scanner,” IEEE Trans. Ultrason., Ferroelec., Freq.
Contr., vol. 59, no. 7, pp. 1487–1499, 2012.

